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Abstract: This research paper presents a data-based energy management method for a vessel that pre-

dicts the upcoming load demands based on data from weather information and its automated tracking

system. The vessel is powered by a hybrid propulsion system consisting of a high-temperature fuel

cell system to cover the base load and a battery system to compensate for the fuel cell’s limited dy-

namic response capability to load fluctuations. The developed energy management method predicts

the load demand of the next time steps by analyzing physical relationships utilizing operational and

positional data of a real vessel. This allows a steadier operation of the fuel cell and reduces stress

factors leading to accelerated aging and increasing the resource efficiency of the propulsion system.

Since large ships record tracking data of their cruise and no a priori training is required to adjust the

energy management, the proposed method can be implemented with small additional computational

effort. The functionality of the energy management method was verified using data from a real ship

and records of the water currents in the North Sea. The accuracy of the load prediction is 2.7% and

the attenuation of the fuel cell’s power output could be increased by approximately 32%.

Keywords: energy management; load prediction; hybrid marine propulsion system; SOFC-powered

ships

1. Introduction

The availability of cheap fuel and loose environmental regulations have led to shipping
being an important backbone of global logistics and caused large growth in the recreational
shipping sector [1]. About 3% of the global anthropogenic carbon dioxide emissions come
from the shipping sector [2]. To comply with future regulations and to reduce emissions
from ships, the maritime sector is looking for alternatives to internal combustion engine
(ICE) propulsion systems, which currently power the majority of vessels [3]. While less-
emitting propulsion systems can be retrofitted and partially replace ICEs, ships can also
be redesigned implementing fully electrified powertrains. Research into zero-emission
drive systems for marine applications is focused, in particular, on fuel cells and lithium-ion
batteries (LIB) [4]. Ferries and other smaller vessels can already be powered entirely by
batteries, as the energy density of LIBs is sufficient for these routes [5]. However, the pure
battery-powered propulsion of large ships, such as container ships or cruise ships, has so far
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only been the subject of concept studies and is only economically and technically feasible
if the energy densities of LIBs continue to increase beyond 1000 Wh/L in the future [6].
Reducing emissions of cruise ships is important as they frequently stop at busy ports where
the emission of pollutants is an additional concern in these often densely populated areas.
However, large vessels cannot solely be powered by state-of-the-art LIBs because of the
low energy density in comparison to the energy content of large fuel storage tanks filled
with conventional fuels such as heavy fuel oil or hydrogen. Hence, hybrid drivetrains are
of interest to fulfill the power and energy requirements.

A solid oxide fuel cell (SOFC) is a viable and potentially sustainable alternative to re-
place conventional means of propulsion because it operates at high temperatures, enabling
the utilization of process and excess heat and achieves high electrical efficiencies [7]. In [8],
a lab-scale SOFC was operated for more than 100,000 h which proves the longevity of the
component under laboratory conditions. SOFCs are particularly relevant for the maritime
sector due to their compact design, high power density, and compatibility with various
fuels like hydrogen, ammonia [9], or methane [10]. SOFCs operate at elevated temperatures
between 600 and 1000 ◦C [11]. A portion of the process heat and the heat generated from
energy conversion within the cells can be utilized in the ship’s heating system, further
increasing system efficiency. These features make SOFCs suitable for providing electrical
and thermal power for vessels, enabling greater energy efficiency and reduced greenhouse
gas emissions compared to conventional ICE-powered propulsion systems. SOFCs have a
comparably slow responsiveness towards electrical load changes, which was investigated
by Obara et al. in [12]. Therefore SOFCs are typically supported by secondary power
sources such as LIBs or supercapacitors to compensate for the low dynamic capabilities of
the SOFC depending on the application [13]. Zhang et al. [14] have studied the utilization
of SOFCs coupled with supercapacitors in microgrids and considered the slow dynamic
responsiveness in their energy management development without utilizing additional data
sources to forecast load events or applying machine learning to reduce stress factors on the
SOFC. However, their work has not followed a generic approach for the implementation of
the EMS and therefore cannot be easily adapted to other applications. Wu et al. [15] studied
an SOFC–engine hybrid power system, which could be used in marine applications due to
the fuel flexibility of SOFCs. Their approach does not eliminate local emissions and the
dynamic load components that cannot be provided by the SOFC might not be compensated
by the motor.

While SOFCs appear to be a promising alternative to engine-powered powertrains,
there are still challenges and considerations that need to be addressed before widespread
market introduction is possible. Until now, there have only been a few drive concepts for
vessels in which SOFCs have been used or investigated. A 150 kW SOFC using natural gas
as fuel has been implemented in a cruise ship [16]. However, a fuel cell of this size is at best
suitable as a retrofit solution to replace ICEs. Within the German research project SchIBZ,
a 50 kW diesel-powered SOFC for a marine application was investigated [17]. Diesel-
powered SOFC systems have a higher efficiency than conventional diesel engines but
still produce exhaust gases and nitrogen oxides in the diesel fuel processing or reforming
process. As part of the European NAUTILUS project, a 60 kW SOFC for different fuel
types is being developed for a cruise ship [18]. Consequently, fuels that do not emit any
greenhouse gases are being investigated as part of this research work, which in the long
term will enable the targeted emission-free shipping. However, SOFC technology has not
yet been scaled up. This is also reflected in the costs incurred for the installation of an
SOFC. While conventional powertrains cost between 250 and 300 EUR /kW, SOFCs require
an investment of 2000 EUR /kW [19]. Van Biert et al. [20] also describe the low level of
technological maturity and the mechanical vulnerability as additional factors that hinder
the widespread adoption of this technology in the maritime sector. It is therefore essential
to examine the service life of SOFCs more closely and to reduce stress factors that lead to
premature degradation.
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Investigating the aging mechanisms of SOFCs is an important aspect of research to
prepare the technology for commercial use in various applications. In long-term operation
under static laboratory conditions, a lifetime of a short SOFC stack of up to 11.5 years of
operation was achieved [8]. As large ships have service lives of several decades [21], a long
service life is economically attractive for this type of application. If SOFCs are operated
with dynamic power outputs, they undergo thermal cycling as the temperature in the
stacks changes with power fluctuations which can increase the area surface resistance of
the fuel cell [22]. This thermal cycling can cause mechanical degradation within the cell,
such as delamination and crack formation at the interfaces between the respective electrode
and the electrolyte [23]. Thus, it can be assumed that the steady-state operation of a SOFC
is beneficial for its longevity. Hence, SOFCs are not suitable for load-dynamic applications
and must be supplemented by another component such as a battery or supercapacitor as
cycling stresses the materials of SOFC and leads to accelerated degradation.

The development of efficient EMSs for the power distribution between the propulsion
components of hybrid propulsion systems is an essential element in the electrification
of marine propulsion systems. For the EMS to achieve optimal overall efficiency of the
powertrain, it is necessary to operate the individual power system components in efficient
operating ranges. This can be achieved by operating the fuel cell in its most efficient
operating range. Ma et al. [24] have investigated a rule-based energy management method
for a fuel cell–battery hybrid vessel, aiming to reduce stress factors on the battery to extend
the longevity of the component. The size of each drive component should be in proportion
to the savings that can be achieved by extending its service life. Dinh et al. [25] studied an
EMS based on equivalent fuel consumption minimization for a hybrid vessel drivetrain
powered by an ICE and a battery, which aims to maximize the efficiency of the engine
generators. However, only load sections in which dynamic positioning is carried out were
examined. Bui et al. [26] have developed a real-time capable EMS for a diesel generator
and battery-powered hybrid propulsion system, enabling efficient dynamic positioning
of ships and validating the control logic in a hardware-in-the-loop environment. Bassam
et al. [27] have studied various energy management methods for a hybrid fuel cell–hybrid
ferry application focusing on the minimization of fuel consumption using characteristics
of a real ship. However, no stress factors were investigated that could lead to accelerated
degradation of the components, which could increase operating costs in addition to fuel
costs. Kistner et al. [28] have also considered the slow dynamic responsiveness of the SOFC
in their optimization approach for the dimensioning of hybrid ship concepts. Characteristics
and the dynamic behavior of the SOFC were considered, but no further data from ship
operation were considered. In recent years, machine learning-based algorithms have
become increasingly popular in energy management research [29]. The rapid increase in
computing power enables the development of complex methods for predicting load events.
This enables the control of an energy management system (EMS) for a marine application
using model predictive control [30]. However, the resource-intensive training phases of
machine learning algorithms or the high requirements on the computing power of the
controller pose major obstacles to widespread use in energy management, burdening the
achievement of real-time responsiveness necessary for efficient energy optimization.

Since ships are often cruising in densely trafficked waters, the surrounding area must
always be monitored to avoid collisions. In addition to radar systems that enable a direct
analysis of the surroundings, the automatic identification system (AIS) is an important
instrument in modern shipping. Through AIS, ships continuously transmit information
about their position, speed, direction, and destination via radio [31]. These signals can be
received by base stations and other vessels. AIS has been continuously enhanced and is
also subject to research in the field of data mining for maritime research [32]. Kim et al. [33]
have utilized AIS data to estimate the operational efficiency of ships to calculate fuel
consumption without data from the drive train. However, no EMS has been developed that
uses the AIS data to operate the vessels more efficiently.
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To the best knowledge of the authors, no efforts have been made to develop an EMS for
a large vessel that takes tracking and weather information into account to predict upcoming
load events. Through the integration of the following main contributions, this work seeks
to close the previously described research gap:

� Development of an energy management method for ship propulsion systems powered
by SOFCs and batteries utilizing authentic cruise ship power profiles, tracking data,
and weather information.

� The implementation and enhancement of data-based load prediction algorithms
within the energy management to increase the efficiency of the propulsion system.

� Improvement of the load distribution to better conform with the dynamic behavior
of the SOFC to extend its lifetime and increase the resource efficiency of the propul-
sion system.

Furthermore, this work extends the existing research with the following secondary
contributions:

� Introduction of a method using physical relationships between the characteristics of
the ship and its flow properties.

� Verification of the functionality of the proposed data-based energy management
method based on real data from cruises.

2. Drive Train and Data Sources for Modeling

In the following sections, the basic principles of the hybrid drive train as well as the
data basis for the development of energy management algorithms are described.

2.1. Hybrid Propulsion System

For the electrification of a cruise ship, a modular and scalable propulsion system,
whose topology is shown in Figure 1, is suggested. The drive train of the vessel is pow-
ered by an SOFC system to cover the base load and a LIB to provide the dynamic load
components. The following cruise ship propulsion system will be simulated:

� PSOFC,min = 0 W
� PSOFC,max = 45 MW
� EBat = 5 MWh
� PBat,max = 10 MW (or 2C)

 

 

 

 

 

 
 
 
 

Figure 1. Topology of a fuel cell–battery hybrid propulsion system.

The overall electrical power PDemand consists of the power demand required for
propulsion (PPropulsion) and the electrical load or hotel load (PHotel); PSOFC represents the
fuel cell’s output power, and PBat represents the battery system’s in- or output power,



J. Mar. Sci. Eng. 2023, 11, 2259 5 of 24

depending on whether the battery is being charged or discharged. The temporal resolution
of the calculation was set to ∆t = 15 min matching the resolution of the power demand data
set. Such a resolution is plausible to accurately develop an EMS for a cruise ship application
due to the high inertia of large ships in comparison to other electric vehicle applications
such as cars. In the simulation, no distinction is made between the propulsion load and the
hotel load, as these loads cannot be decoupled in the electrical intermediate circuit of the
ship topology under investigation.

A section of the load profile, which was used as a basis for the development of energy
management, can be seen in Figure 2. The data set comprises a measured load profile of
a large cruise ship from 2019. The sample rate is 15 min. At the harbor, the investigated
cruise ship has a total electrical power demand below 10 MW (where PHotel is dominant).
At sea or during maneuvering, the total electrical power demand is above 10 MW. The
harbor mode can be repeatedly observed in Figure 2, e.g., between t = (2, 3). At sea, the total
electrical load demand mainly depends on speed and weather conditions. Specifications of
the cruise ship are shown in Table 1.

Δ

≈

𝑃 ∝  𝑣

Figure 2. Measured load profile of the vessel propulsion load and hotel load for seven days dur-
ing summer.

Table 1. Specifications of the investigated vessel.

Specification Value Details

Ship size 127,000 GRT
1 gross register tonnage

(GRT) = 100 cubic feet ≈ 2.83 m3

Ship length 300 m
Maximum electrical

power demand
46.8 MW

Sum of propulsion power
demand and hotel power demand

Draft (hull) 8.1 m
Maximum speed 22 knots 22 knots = 40.74 km/h

2.2. Hydrodynamic Aspects

For speeds below hull speed, the power requirement PDemand, which a ship must con-
tinuously apply to maintain a certain velocity vw through the water, can be approximated
by a cubic relationship [34]:

PDemand ∝ v3
w (1)

On calm waters, the proportionality factor depends solely on the design and surface
properties of the hull. In waters where ships navigate, there are usually currents of various
types. Larger global ocean currents overlap with tides, currents at river mouths, wind-
induced movements, or other local effects to form a diverse current pattern, which can vary
in strength depending on the water depth [35].
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On the left side of Figure 3, a schematic drawing of a ship traveling through the water
at a certain speed over ground vg is shown. This speed can be determined, for example,
using a satellite navigation system such as a Global Positioning System (GPS). At the same
time, the ship is exposed to the velocity of ocean currents, which is indicated by vc in
Figure 3. The water resistance in such a case does not result directly from the speed over
ground vg, but from the actual speed of the ship through water, which is influenced by the
currents. In the right part of Figure 3, it is shown how to calculate the velocity through the
water vw as the difference between the velocity vectors vg and vc.

 

Figure 3. The influence of currents on a ship with some trajectory shown as a black wavy arrow and
the relationship between the different speeds vw, vg, and vc in a coordinate system.

2.3. Losses in the Drive Train

In addition to all flow resistances to which the ship is subjected when moving through
the water, there are also other inefficiencies in the drivetrain that increase the power
requirement. High power losses, especially in the transmission of the power of the turning
machine to the movement of the ship through the water with the help of a ship’s propeller
are present. Ship propellers typically have efficiencies in the range of 50 to 70% [36],
depending on the design and speed of travel. The propeller efficiency is defined as the
ratio of the thrust power and the shaft power. Furthermore, the losses of power electronic
components such as converters and inverters also decrease the overall efficiency of the
drive train. Power electronics built into drivetrains with power ratings of several MW
typically have efficiencies of well above 80% under normal load conditions [37]. In this
work, the losses of power electronics have implicitly been considered in the calculation but
have not been modeled or mapped within the simulation framework.

2.4. Data Collection

As described above, many vessels continuously transmit position, speed, and other
cruise data via the AIS system. This data is not only continuously provided to other
ships but also collected and archived by government agencies and numerous commercial
organizations. Since the investigated cruise ship was underway in areas of the North Sea,
where a good data basis was present, the development and verification were restricted
to this region. The archives listed in Table 2 were considered. In the period from April
to October 2019, the vessel was cruising in European waterways. The route of the vessel
during parts of this period known from the AIS data is shown in Figure 4. In Figure 4, areas
for which flow data from the Federal Maritime and Hydro-graphic Agency of Germany
(German: Bundesamt für Seeschifffahrt und Hydrographie, short BSH) were received are
shown in addition to AIS data.
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Table 2. Overview of investigated data archives for ship tracking and coastal area characteristics.

Source Data Type Details

Federal Maritime and Hydrographic
Agency of Germany (German:

Bundesamt für Seeschifffahrt und
Hydrographie, short BSH)

Current data and AIS

Current data for the North Sea and in somewhat
higher spatial resolution for the German Bight from

observations and estimates based on
physical models

Danish Maritime Authority AIS
Data from all ships that have sailed in waters

surrounding Denmark
Norwegian Coastal Administration AIS Data from ships worldwide with varying resolution

United Nations AIS Data from ships worldwide with varying resolution

Figure 4. Route of the vessel in Europe from AIS- data in summer 2019 shown in the larger dotted
rectangle and areas with higher resolution current data shown in the yellow highlighted smaller
dotted rectangle.

Because of the good data basis of the North Sea waters, the development and verifica-
tion of the energy management methods were restricted to these data sets.

2.5. Processing of the Collected Data

The utilized data sets have gaps, in which the recording was interrupted. Both the load
consumption data and the AIS data have gaps of varying lengths. For analyses such as the
simulation of an EMS method or the evaluation of the quality of a prediction of the ship’s
load demand, it is helpful to not only consider individual 15 min segments (i.e., individual
data points) but also analyze longer periods with consecutive data points. These periods
will be called episodes in the following and are described in Table 3. Since certain dynamic
effects, such as the trajectory of the battery’s state of charge (SOC), must be analyzed for
the evaluation of an EMS, only episodes of at least 12 h in duration are considered. Based on
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similarities in the routes traveled during the identified episodes, the episodes are assigned
to groups I to III. Figure 5 shows the corresponding route of the episodes on a map of the
North Sea for the three groups.

Table 3. Selected episodes in the selected region with consecutive data points from 2019.

Name Group Start Time (UTC) End Time (UTC) Duration in hh:mm

A I May 19 08:30 May 20 02:45 18:15
B I Jun 09 11:15 Jun 10 02:15 15:00
C II Jun 13 20:30 Jun 14 16:00 19:30
D III Jun 28 13:30 Jun 29 04:15 14:45
E I Jun 30 01:45 Jul 01 02:15 24:30
F II Jul 04 20:30 Jul 05 13:15 16:45
G I Jul 21 07:15 Jul 22 02:30 19:15
H II Jul 25 20:30 Jul 26 13:00 16:30
I I Aug 11 11:30 Aug 12 02:45 15:15
J I Sep 21 22:45 Sep 23 01:30 26:45
K II Sep 26 16:00 Sep 27 04:45 12:45

Figure 5. Visualization of the selected episodes of the investigated cruise ship on the North Sea coast
of Germany, the Netherlands, Denmark, and Norway, of Group I (left), Group II (center), and Group
III (right); the routes are indicated by black arrows.

Some routes with a southward trajectory that end or begin in the middle of the North
Sea can be noticed. At these points, the ship continued traveling until reaching a harbor,
but gaps were present in the AIS data before the beginning or after the end of the respective
episodes. The abrupt end of the routes in group I in the northern area is due to the
geographical limitations of BSH data.

Figure 6 shows the measured load profiles of the episodes. Since there are longer
breaks between the episodes due to incomplete data, as shown in Table 2, the load profile
is not shown as a continuous line but with breaks in between.
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Figure 6. Measured 15 min load demand of episode A–K. The individual episodes are highlighted in
light blue and separated by break intervals which are scaled equally.

3. Simulation of Propulsion Components and Energy Management Development

In this chapter, the simulation of the battery and fuel cell as well as the development
of the control methods for the efficient distribution of power between the components
is described. Based on the previously discussed fundamentals and data, a rule-based
energy management method will be considered as a reference for the improved EMS.
The functionality of this improved method will be verified with simulations. For the
development of an EMS, a simulation of the system components is necessary to evaluate
and verify strategies without applying them directly in real applications. Python was used
in this work as the programming language to create the simulative framework.

3.1. Modeling of the Battery

To model the electric performance of the LIB as well as the thermal losses, the equiv-
alent circuit model (ECM) shown in Figure 7 was used. The ECM consists of a voltage
source, resistors representing ohmic and polarization resistances, and capacitors represent-
ing polarization capacitances within the battery cell [38]. Measurements on a battery cell
were carried out and used to fit the ECM. The electrical and thermal behavior is simulated
with the ISEAFrame [39], which is an open-source program for battery simulation.

Figure 7. Equivalent circuit model of a battery cell.

The open circuit voltage UOCV of the battery, which can be measured without an
applied load at the terminals of the battery, is the result of the internal structure of the
battery and mainly depends on the state of charge, which is given as a percentage value
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between 0 and 100% and can be compared to a fuel level indicator of a vehicle. UOCV can
be measured when no load is connected to the battery and all diffusion processes have
completely decayed. As soon as the battery is charged or discharged, the output voltage of
the battery rises or drops due to the voltage drop across the elements of the ECM [40]. In
the unloaded state, UOCV and UCell are equal. The electrical parameters of the battery can
be found in Table 4. The voltage across the parallel connection of resistance and capacitance
is calculated as follows:

.
Ui = −

1
Ri·Ci

·Ui +
1
Ci

·ICell. (2)

Table 4. Electrical parameters of the battery cell.

Description Value

CCell 64 Ah
Nominal cell voltage 3.7 V

Cell voltage range 3.0–4.2 V
R0 0.75 × 10−3 . . . 1.70 × 10−3 Ω

τ1 = R1·C1 13.04 . . . 100.00 s
τ2 = R2·C2 385.54 . . . 1.00 × 104 s

The SOC is calculated by

SOC = SOC(t0) +
η

CCell

∫ t0+t

t0

ICelldt, (3)

where η is the coulomb efficiency and CCell is the nominal capacity of a single battery cell.
To simulate the input current of a single cell, the input power is scaled down on the battery
model’s input side. To simulate the voltage of the entire battery system, the output side
battery voltage is scaled up.

3.2. Modeling of the Fuel Cell

Given that the EMS strategies are deployed on certain test sets, a simple modeling of
the SOFC is sufficient, which does not consider reactions such as heat conversion. Figure 8
shows a qualitative illustration of the fuel cell’s output power PSOFC which follows the
power demand signal PSOFC,demand considering the safe boundaries of operations within
the interval (PSOFC,min,PSOFC,max) and the limit of the rate of change of the output power.
The maximum dynamic rate to operate the fuel cell ∆PSOFC,max is set to 2 %

min ·PSOFC,max.

𝑈
𝑈

𝑈 𝑈
𝑈  1𝑅 ∙ 𝐶 ∙ 𝑈 1𝐶 ∙ 𝐼 . 

𝑆𝑂𝐶 𝑆𝑂𝐶(𝑡 ) 𝜂C 𝐼  d𝑡, 
η

− − Ω
τ ∙
τ ∙

∆𝑃 , 2 % 𝑚𝑖𝑛 ∙ 𝑃 ,

Figure 8. Modeling of the output power of a SOFC PSOFC concerning the input power PSOFC,demand.

Evaluation Criterion for the Attenuation of the Power Output Behavior of the SOFC

To assess the influence of dynamic load processes in the context of the developed
energy management methods, a criterion is introduced that cumulates the rate of change of
the fuel cell for each investigated episode. For each time range between two data points
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from the load profile with n samples, the RMS of the rate of change dPSOFC
dt

[

W
s

]

will be

cumulated for an entire episode, yielding a score for the dynamic behavior of the SOFC:

ScoreAttenuation :=

√

1
tn − t0

∑
n

i=1
(Pi − Pi−1)

2

ti − ti−1
, (4)

where a higher score could lead to the accelerated aging of the SOFC due to thermal
cycles which is a dominant stress factor for SOFCs causing irreversible damage to the
active materials.

3.3. Rule-Based Energy Management Method

The SOFC is used to provide the base load of the ship’s electrical power demand
and the battery serves as a buffer to compensate for load transients and peak loads. It is
therefore possible to define a simple energy management method with only a few rules:

PSOFC,demand(t) = Pdemand + c(t)·Pcharge, (5)

PBat(t) = Pdemand(t)− PSOFC(t), (6)

here c(t) represents the time-dependent charge or discharge factor of the battery with
hysteresis. Pcharge is hereby a constant charge or discharge power, which varies according
to the SOC. The essential idea of this strategy is that the energy management method
attempts to meet the total load demand with the SOFC, and that the battery is used to
balance the differential load in case the SOFC cannot respond sufficiently to dynamic
load events. Since, with such a strategy, the battery could either continue to become
increasingly discharged or fully charged over time, depending on the load demand, there
is still compensation if the SOC falls outside the safe operating windows. Therefore, the
safe operating depth of discharge can be kept low to avoid a sudden reach of the end of
charge or discharge voltage, e.g., within 30% to 70% SOC. Figure 9 shows a simulation of
this strategy using the load profiles and the models described in the fundamentals.

 
𝑆𝑐𝑜𝑟𝑒 ∶  ∑ ( )  

𝑃 , (𝑡) 𝑃 𝑐(𝑡) ∙ 𝑃
𝑃 (𝑡) 𝑃 (𝑡) 𝑃 (𝑡)𝑐(𝑡) 𝑃

Figure 9. Power distribution in the simulation of the rule-based energy management method of the
different episodes.

The simulation shows that this basic rule-based energy management method manages
to fulfill the fundamental task formulated in Equations (5) and (6) but also shows its
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disadvantages. Figure 9 shows that the battery is not used intensively, and the SOFC is
operated in a wide power range.

3.4. Development of a Load Demand Estimator

In the following, a prediction for the load demand to distribute the load between
the propulsion components more efficiently by using the battery more intensively and
decreasing the dynamic operation of the SOFC is developed.

Using the processed data, the estimation functions for the different load components
of a cruise ship are empirically derived and integrated to provide an estimator for the entire
load demand. For the development of the estimator, the measured baseload at port will
be analyzed first, before the power demand of the subsequent time steps is estimated by
looking at the relationship between speed and power demand while at sea.

3.4.1. Empirical Analysis of the Base Load

The base load of the vessel results from the thermal and electrical requirements of
the hotel operation as well as other various consumers, such as signaling systems or a
minimum load that the machines shall always provide. To determine this base load from
the data, periods in which the ship is in port are considered. In the 15 min load profiles of
the cruise ship, there are markers indicating whether the ship was located in a harbor or
not. In Figure 10, all recorded load demand measurements at which the ship was docked
in a harbor are shown. To utilize the data for the development of the EMS, a look-up
table consisting of the arithmetic mean for each time step of a representative day has been
created. The resulting look-up table values and the considered data are shown in Figure 10.
The more data points exist for one given time, the more data points in a harbor have
been recorded.

Figure 10. Arithmetic mean of load demand shown as a blue line and collected data points in harbor
mode as black points for every time of the day.

It can be seen that this mean value fluctuates over the course of the day, i.e., between
t = 6:00 and 18:00. and that the fluctuations are smallest at night. The mean value is
considered as the base load and stored as P̂Baseload,15min(t) for further analysis.
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3.4.2. Analysis of the Propulsion Load

In Figure 11 the measured load of episode D with a total duration of 14:45 h is shown.
Additionally, mean velocity magnitudes over ground vg and velocity magnitudes through
the water vw are shown in the graphs. A relationship between the speed of the ship and its
power requirements can be seen. It is also evident that the power requirement increases
during acceleration. At the same time, it can be observed that, after the first drop at
t = 32, vg increases again to approximately the value the ship had at the beginning of the
episode. However, the power demand rises to a higher value and stays there for a while. A
somewhat stronger increase can initially be explained by an acceleration of the ship and
the power to be applied for this purpose to increase the kinetic energy. However, since
the power requirement remains at a higher value beyond this, this is not sufficient as an
explanation. At this point, other effects occur that increase the power requirement of the
ship. These are ocean currents, for example, which influence the speed through the water
and thus the power demand at the same speed over ground. It can be observed that the
speed over ground corrected with the current data, i.e., the speed through the water vw

follows the course of the power more closely.

𝑃 ,  (𝑡)

𝑃 (𝑡) 𝑑 ⋅ 𝑣 (𝑡)

Figure 11. Power demand and velocities vw and vg.

Since suitable data to describe the velocities and flows quantitatively are available, a
physical relationship to the power demand can be drawn. To maintain a constant speed
through the water vw, a power Pv must be applied due to the water resistance:

Pv(t) ≈ d · vw(t)
3, (7)

with

vw(t) =
∥

∥

∥

→

v w(t)
∥

∥

∥

(

sin αCOG(t)

cos αCOG(t)

)

=
∥

∥

∥

→

v g(t)−
→

v c(t)
∥

∥

∥

(

sin αCOG(t)

cos αCOG(t)

)

. (8)

The cubic coefficient d will be fitted in the further development and an angle αCOG

which represents the direction of the vector vw is present as shown in Figure 3. AIS data do
not provide the vector of the speed but the length of the vector and an angle α. Considering
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the relation between kinetic energy and propulsion power, the change in power after a time
step at time t can be described as follows:

∆P̂kin,15min(t) = ηe f f ·m·
1

∆t

(

→

v g,15min(t)·∆
→

v g,15min(t)−
1
2

∆
→

v g,15min(t)
2
)

. (9)

Equations (7) and (9) form a system of equations, whose only unknown constants
are ηe f f , m, and d. With the help of the least squares method, a curve is fitted to obtain
the empirical relationship between the recorded velocity of the ship vw, and the power

demanded for propulsion, which can be seen in Figure 12. The values d ≈ 2.4420·104 Ns2

m2

and ηe f f ·m ≈ 3.7735·107 kg are obtained. Assuming an efficiency of the drive train of
ηe f f = 70%, including the transmission of power through the ship’s propeller, a mass of
m ≈ 53.9·106 kg is obtained, which may correspond to the estimated displacement weight
of a cruise ship. The exact mass of the ship is not known, but the order of magnitude
is plausible.

𝑣 (𝑡) ‖�⃗� (𝑡)‖ sin 𝛼 (𝑡)cos 𝛼 (𝑡)  �⃗� (𝑡) �⃗� (𝑡) sin 𝛼 (𝑡)cos 𝛼 (𝑡) . 𝑑 𝛼𝛼
∆𝑃 , (𝑡) 𝜂 ∙ 𝑚 ∙ 1∆𝑡 �⃗� , (𝑡) ∙ ∆�⃗� , (𝑡) 12 ∆�⃗� , (𝑡) . 

𝜂 𝑚 𝑑
𝑑 2.4420 ∙ 10  𝜂 ∙ 𝑚 3.7735 ∙ 10  kg𝜂 70%𝑚 53.9 ∙ 10  kg

(𝑡 ∆𝑡, 𝑡)
𝑃 𝑡, 𝑣 , ∆𝑣 , 𝑣 𝑃 (𝑡) 𝑃 (𝑡, 𝑣 ) ∆𝑃 𝑡, 𝑣 , ∆𝑣 . 

Figure 12. Relation between measured power demand values and speed of the vessel shown as a
curve fit.

An estimation of the mean total power demand of the ship at a time t with known
mean velocities in the interval (t − ∆t, t) as well as velocity changes compared to the last
time interval is thereby possible:

P̂
(

t, vg, ∆vg, vw

)

= P̂Baseload(t) + Pv(t, vw) + ∆P̂kin

(

t, vg, ∆vg

)

. (10)

4. Results

In this section, the results of the data analysis and processing, as well as the perfor-
mance of the energy management method, will be described in detail.

4.1. Estimation of the Total Load and Power Requirement of a Vessel

In the following, a comparison of the estimates of the total load with the measured
load profiles for the eleven episodes A to K is conducted. Figure 13 shows PDemand and the
estimation as Pest = P̂

(

t, vg, ∆vg, vw

)

as well as the deviation of Pest with respect to PDemand.
The mean deviation for all episodes is 7.68%.
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𝑃𝑃 𝑃 𝑡, 𝑣 , ∆𝑣 , 𝑣 𝑃𝑃

(a) 

(b) 

𝑃 𝑃

Err (𝑡 ∆𝑡)

Figure 13. Comparison between measured and estimated load with (a) the load curves; (b) the
deviation of the estimated values Pest from the measured values PDemand in percent shown on a
logarithmic scale as red points.

The errors of neighboring time steps are not independent of each other but seem to
be related, i.e., overestimation or underestimation continue for consecutive data points
in an episode. The deviation appears to be systematic. To improve the estimator, an
iterative algorithm can be used that computes an error tracker Errtracker(t + ∆t) to reduce
the difference ErrP̂(t) between the estimate P̂(t) and the measurement. ErrP̂(t) is calculated
as follows:

ErrP̂(t) = PDemand − P̂est, (11)
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The tracker Errtracker(t + ∆t) and the filtered estimate P̂est.,filtered(t) are calculated
iteratively as follows:

Errtracker(t + ∆t) := p·Errtracker(t) + q · ErrP̂(t), (12)

as well as
P̂est.,filtered(t) := max

[

P̂est(t) + Errtracker(t), P̂baseload
]

, (13)

in which the filtered power P̂est.,filtered(t) guarantees that the estimated values do not fall
below the baseload of the vessel since those values will be assumed as implausible. To
obtain the best load estimate, the parameters p and q were varied, while satisfying the
constraint p + q = 1. The estimate with the lowest MAPE was achieved by the factors
p = 0.3 and q = 0.7, which is shown in Figure 14. Figure 15 shows PDemand and the
filtered estimation as Pest.,filtered as well as the deviation of Pest.,filtered and PDemand. The
mean deviation for all data points is 2.67%. Compared to the unfiltered estimator, a clear
improvement in the estimated values can be seen.

Err (𝑡) 𝑃(𝑡) Err (𝑡)
Err (𝑡) 𝑃 𝑃Err (𝑡 ∆𝑡) 𝑃 ., (𝑡)

Err (𝑡 ∆𝑡): 𝑝 ∙ Err (𝑡) 𝑞 ⋅ Err (𝑡)
𝑃 ., (𝑡): max 𝑃 (𝑡) Err (𝑡), 𝑃𝑃 ., (𝑡)

p q 1 𝑃𝑃 ., 𝑃 ., 𝑃

p q.Figure 14. MAPE of different weighting factors p and q.

(a) 

𝑃 , 𝑃

Figure 15. Cont.



J. Mar. Sci. Eng. 2023, 11, 2259 17 of 24

(b) 

𝑃 , 𝑃Figure 15. Improved estimator and error analysis using p = 0.3 and q = 0.7 with (a) the load curves;
(b) the deviation of the filtered and estimated values Pest,filtered from the measured values PDemand in
percent shown on a logarithmic scale as red points.

4.2. Look-Ahead Energy Management Method

Building on the filtered estimator of the load demand, a new EMS strategy that predicts
the load distribution is defined. In doing so, it is assumed that the ship, as described in the
previous chapter, travels on planned routes at reasonably predictable speeds over ground.
Under these assumptions, it can be assumed that the required speed and position of the
ship for a future period at any point in time are known. With the aid of the estimator
developed in the previous section, the load demand for future time events can be predicted
and the load distribution can be adjusted appropriately.

4.2.1. Definition of the Energy Management Method

Starting at a time t, the future load βLA·15 min is predicted, with βLA as a configurable
look-ahead factor of the energy management method to determine the forecast time horizon.
The filtered estimator P̂est.,filtered to predict the power demand of the ship is used. We want
to average these predicted load values to an arithmetic mean PLA(t). PLA(t) thus represents
the estimated mean load for the time t = t0 + βLA·15 min.

In addition, SOC(t) was utilized to denote the current state of charge of the battery and
(SOCmin,SOCmax) to define an interval that the SOC should not leave if the load scenario
allows. In the following, interval limits of (SOCmin,SOCmax) = (40%,70%) will be used to
maintain a safe operational window of the battery. At first, a dynamic range for the output
power of the SOFC is defined with

PSOFC,min(t) := PLA(t) +
1

∆t
(SOCmin − SOC(t))·CBat, (14)

and

PSOFC,max(t) := PLA(t) +
1

∆t
(SOCmax − SOC(t))·CBat, (15)

which the SOFC should not leave. Based on this, the power PSOFC,demand requested by the
energy management from the SOFC at time t is set as follows:

PSOFC,demand(t) :=







PSOFC,min(t), i f PSOFC,demand(t) < PSOFC(t)
PSOFC,max(t), i f PSOFC,demand(t) > PSOFC(t)

PSOFC(t), else
, (16)
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With these rules, an EMS with the following two goals is developed:

1. The SOC should be kept over time in a pre-definable operational range to keep the
battery in a safe operational window and avoid degradation due to a higher depth of
discharge [41].

2. The SOFC should change its output power only if it is foreseeable that a deviating
average power is to be provided by the propulsion system.

Figure 16 shows the functionality of the EMS.

𝑡 𝛽 ∙ 15 𝛽𝑃 ., 𝑃 (𝑡)𝑃 (𝑡) 𝑡 𝑡 𝛽 ∙ 15

P , (𝑡): 𝑃 (𝑡) ∆ (𝑆𝑂𝐶 𝑆𝑂𝐶(𝑡)) ∙ 𝐶
P , (𝑡): 𝑃 (𝑡) 1∆𝑡 𝑆𝑂𝐶 𝑆𝑂𝐶(𝑡) ∙ 𝐶 , 𝑃 ,𝑡

𝑃 , (𝑡): 𝑃 , (𝑡), 𝑖𝑓 𝑃 , (𝑡) 𝑃 (𝑡) 𝑃 , (𝑡),   𝑖𝑓 𝑃 , (𝑡) 𝑃 (𝑡)𝑃 (𝑡), 𝑒𝑙𝑠𝑒
 

 

Figure 16. Schematic overview of the functionality of the look-ahead energy management method.

4.2.2. Simulation of the EMS and Performance Check

In Figure 17, the power distribution of the look-ahead EMS is shown. Compared to
the power split of the rule-based energy management method shown in Figure 9, the SOFC
no longer strictly tries to follow the load demand of the system. We can even see periods
in individual episodes where the actual output power of the SOFC remains constant. In
return, the battery must compensate for more power differences in the load demand.

𝛽 4Figure 17. Resulting power split of the look-ahead strategy simulation with βLA = 4 and SOCmin,
SOCmax = (40%, 70%).



J. Mar. Sci. Eng. 2023, 11, 2259 19 of 24

The attenuation score for the SOFC is shown in Figure 18 for the look-ahead strategy.
Table 5 shows the resulting attenuation score values for both methods. It shows that the
score of the look-ahead strategy is lower for all episodes, which is an indication of less
transient events and an overall steadier operation of the SOFC system. Figure 19 shows a
detailed view of episode A.

𝛽 4

(a) 

(b) 𝛽 4Figure 18. (a) SOC; (b) attenuation score of the SOFC for the look-ahead strategy with βLA = 4 and
SOCmin, SOCmax = (40%, 70%).

Table 5. Aging score of the SOFC for the proposed look-ahead strategy and the rule-based EMS.

Episode
ScoreAttenuation

Look-Ahead Rule-Based EMS

A 2546 3113
B 1202 2206
C 1886 3028
D 3119 4529
E 1582 2173
F 1191 2336
G 1261 1692
H 1872 2793
I 1202 1626
J 1791 2036
K 2132 3579
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Figure 19. Detailed view of the power split of episode A for the look-ahead strategy.

The results indicate the effectiveness of the suggested look-ahead EMS strategy, which
should lead to a reduction of stress factors on the SOFC caused by high dynamics. Moreover,
the utilization of the battery system is much higher, which could lead to higher cyclic aging
of the battery. However, the battery is proportionally much smaller than the SOFC and
the size ratio of the components should be in line with the savings that can be realized by
prolonging its service life.

5. Discussion

This work aimed to investigate the extent to which an EMS for a hybrid ship propulsion
system can benefit from the use of additional data sources. We quantitatively investigated
external influences on a ship to be able to predict the future load demand. Predicting the
future load demand of a ship seems to be a reasonable method to maintain a steady-state
operation for power sources with low dynamic capabilities. The rigid route planning
in shipping, which makes reliable forecasting over longer periods possible in the first
place, is particularly helpful here. Unlike in automobile traffic, ships rarely have to react
to spontaneous events on long sections of the route, so that a planned route can usually
be executed. Most of the environmental influences acting on the ship can be suitably
modeled and predicted to a certain extent considering the hydrodynamic properties of the
investigated vessel so that an EMS strategy that adjusts its behavior based on predictions of
future load demand seems to be a reasonable method which can be realized without high
computational burden.

After modeling the physical relationships and selecting appropriate data sets to deter-
mine the model parameters, an estimator for the load demand of a cruise ship was devel-
oped, and the accuracy of the prediction was compared against real measurement data. This
yielded an accuracy of 7.68%, which would still represent powers in the multi-MW-range
for such a large application. Since the upper limits of the battery power capability could
be exceeded in this case, this could present a technical issue for the hybrid drive system.
The error could be decreased to 2.68% by analyzing and correcting the systemic error. This
is an acceptable prediction given that the average deviation in this case is approximately
1.25 MW for the maximum power output of the investigated ship application. This load
can be supplied by the battery assumed in the investigated configuration. From this, an
EMS has been developed that utilizes load prediction to improve the dynamic operation
of the SOFC. As the SOFC is the main propulsion component, good dynamic behavior,
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which reduces the stress factors on the component, is essential for the efficient operation of
the ship’s propulsion system. The functionality of the EMS was verified with the help of
simulations over different authentic cruise profiles.

The data-based energy management method that has been developed predicts load
curves with a high degree of accuracy based on tracking and weather data and can therefore
process very large amounts of data to implement a resource-efficient power distribution
between the drive components. Predictions are realized without the implementation of
neuronal networks or regression models which can be resource-intensive to set up, train,
and tune. This algorithm is therefore able to run on conventional ship control systems
and is therefore a retrofit option. In addition, the use of this EMS is relevant for an
economic operation, as the procurement and commissioning of SOFCs has comparatively
high costs [42]. By reducing stress factors, a longer service life of the SOFC can be achieved,
which could significantly reduce the operating costs of this ship application.

However, despite the interesting results, the explanations of this work have a few
shortcomings, which could be overcome in future work. For example, due to a lack of
data, the simulation could only be performed for a few periods. For a more comprehensive
validation, it would be interesting to study the functionality over a longer period. This
could reveal further potential for improvement. Also, a higher sampling rate of the load
profiles underlying the calculations and simulations would have been helpful to investigate
the dynamic performance of the hybrid propulsion system in a higher level of detail.

Outlook and Future Work

The estimation function presented for the load demand does not yet represent all
environmental influences. Particularly wind and waves, which have a significant influence
on the power demand of a ship, could not be considered. By additional physical modeling
of these effects and the use of further data, the estimation of the future load consumption
of a ship could be further improved.

Besides a mapping of further environmental influences, it could also be investigated
whether the estimation procedures in general can be improved. In this work, a balancing
calculation was performed using polynomial function approaches and the least squares
method. This could involve the use of other methods to establish a functional relationship
between the measured values. A mapping with Gaussian processes or the training of
suitable neural networks could improve the results in the case of large data sets.

Furthermore, the functionality of the algorithms could be validated in a hardware-in-
the-loop test bench environment. Such a measurement series would allow for a precise
examination of the propulsion components concerning their dynamic behavior or technical
suitability for the designated application. In addition, the real-time capability of the
algorithms on controllers could be verified within the test bench.
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Nomenclature

Abbreviations
AIS Automatic Identification System
ECM Equivalent circuit model
EMS Energy management system
GPS Global Positioning System
ICE Internal combustion engine
LIB Lithium-ion battery
SOC State of charge
SOFC Solid oxide fuel cell
Parameters
α Angle of the velocity vector
βLA Configurable factor to determine the prediction horizon
c(t) Charge or discharge factor of the battery
CBat Battery capacity

d
Cubic coefficient for the calculation of the relation between measured
power demand and speed of the vessel

EBat Capacity or maximum energy content of the battery
m Mass of the vessel
η Coulomb efficiency
ηe f f Drive train efficiency
P̂Baseload,15min(t) Arithmetic mean of load demand in harbor mode for 15 min time resolution
PBat(t) Power provided or drawn by the battery at time t
PBat,max Maximum power out-/input of the battery
Pcharge Absolute in- or output power of the battery
Pest = P̂

(

t, vg, ∆vg, vw
)

Mean estimated power demand for given velocities
P̂est.,filtered(t) Filtered estimated power demand
∆P̂kin,15min(t) Change in power after a time step required for propulsion
PSOFC(t) Actual power provided by the fuel cell at time t
PSOFC,demand(t) Power demand applied to the fuel cell at time t
PSOFC,min The minimum power output of the fuel cell; 0 W in the presented simulation
∆PSOFC,max Rate of change of the output power of the solid oxide fuel cell
PSOFC,max The maximum power output of the fuel cell
SOCmin Lower SOC boundary for the simulation
SOCmax Upper SOC boundary for the simulation
UCell Battery cell voltage
UOCV Battery cell open circuit voltage

vc,
→

v c(t) Velocity of ocean currents

vg,
→

v g(t) Velocity over ground

vw,
→

v w(t) Velocity through water
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